19 research outputs found

    A QoE adaptive management system for high definition video streaming over wireless networks

    Full text link
    [EN] The development of the smart devices had led to demanding high-quality streaming videos over wireless communications. In Multimedia technology, the Ultra-High Definition (UHD) video quality has an important role due to the smart devices that are capable of capturing and processing high-quality video content. Since delivery of the high-quality video stream over the wireless networks adds challenges to the end-users, the network behaviors 'factors such as delay of arriving packets, delay variation between packets, and packet loss, are impacted on the Quality of Experience (QoE). Moreover, the characteristics of the video and the devices are other impacts, which influenced by the QoE. In this research work, the influence of the involved parameters is studied based on characteristics of the video, wireless channel capacity, and receivers' aspects, which collapse the QoE. Then, the impact of the aforementioned parameters on both subjective and objective QoE is studied. A smart algorithm for video stream services is proposed to optimize assessing and managing the QoE of clients (end-users). The proposed algorithm includes two approaches: first, using the machine-learning model to predict QoE. Second, according to the QoE prediction, the algorithm manages the video quality of the end-users by offering better video quality. As a result, the proposed algorithm which based on the least absolute shrinkage and selection operator (LASSO) regression is outperformed previously proposed methods for predicting and managing QoE of streaming video over wireless networks.This work has been partially supported by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" with in the Project under Grant TIN2017-84802-C2-1-P. This study has been partially done in the computer science departments at the (University of Sulaimani and Halabja).Taha, M.; Canovas, A.; Lloret, J.; Ali, A. (2021). A QoE adaptive management system for high definition video streaming over wireless networks. Telecommunication Systems. 77(1):63-81. https://doi.org/10.1007/s11235-020-00741-2638177

    Smart resource allocation for improving QoE in IP Multimedia Subsystems

    Full text link
    [EN] IP Multimedia Subsystem (IMS) is a robust multimedia service. IMS becomes more important when delivering multimedia services. Multimedia service providers can benefit from IMS to ensure a good QoE (Quality of Experience) to their customers with minimal resources usage. In this paper, we propose an intelligent media distribution IMS system architecture for delivering video streaming. The system is based primarily on uploading a multimedia file to a server in the IMS. Later, other users can download the uploaded multimedia file from the IMS. In the system, we also provide the design of the heuristic decision methods and models based on probability distributions. Thus, our system takes into account the network parameters such as bandwidth, jitter, delay and packet loss that influence the QoE of the end -users. Moreover, we have considered the other parameters of the energy consumption such as CPU, RAM, temperature and number connected users that impact the result of the QoE. All these parameters are considered as input to our proposal management system. The measurements taken from the real test bench show the real performance and demonstrate the success of the system about ensuring the upload speed of the multimedia file, guaranteeing the QoE of end users and improving the energy efficiency of the IMS.This work has been partially supported by the "Ministerio de Ciencia e Innovation", through the "Plan Nacional de I+D+i 2008-2011" in the "Subprograma de Proyectos de Investigation Fundamental", project TEC2011-27516, and by the Polytechnic University of Valencia, though the PAID-15-11 multidisciplinary projects.Canovas Solbes, A.; Taha, M.; Lloret, J.; Tomás Gironés, J. (2018). Smart resource allocation for improving QoE in IP Multimedia Subsystems. Journal of Network and Computer Applications. 104:107-116. https://doi.org/10.1016/j.jnca.2017.12.020S10711610

    Interactive Videos in IPTV using Hypervideo Links

    Full text link
    [EN] One of the main advantages of Internet Protocol Television (IPTV) is the capability of full duplex communication between the Television (TV) provider and the clients which permits the interactivity of both. From this interactivity, TV providers can obtain extra information from clients. Moreover, clients can even take profit from this type of communication that allows them surfing between videos. However, this feature cannot be used in Digital Terrestrial Television (DTT). This paper shows the design and development of an interactive video for IPTV services that contains hypervideo links with additional information and content that is very useful for viewers. Furthermore, we detail the protocol used to maintain the service between the TV provider and the clients to maintain the service. Finally, the system is tested in a real scenario and the resulting measurements are provided in order to evaluate the network performance needed to offer an adequate service to each client because according to results shows, the use of hypervideo links does not imply an important increase in the ratio of packets per second.This work has been partially supported by the Postdoctoral Scholarship Contratos Postdoctorales UPV 2014 (PAID-10-14) of the Universitat Politècnica de València , by the Programa para la Formación de Personal Investigador (FPI-2015-S2-884) of the Universitat Politècnica de València .Jimenez, JM.; Lloret, J.; Abdullah, MT.; Sendra, S. (2017). Interactive Videos in IPTV using Hypervideo Links. Network Protocols and Algorithms. 9(3-4):77-93. https://doi.org/10.5296/npa.v9i3-4.12540S779393-

    Intelligent Algorithm for Enhancing MPEG-DASH QoE in eMBMS

    Full text link
    [EN] Multimedia streaming is the most demanding and bandwidth hungry application in today¿s world of Internet. MPEG-DASH as a video technology standard is designed for delivering live or on-demand streams in Internet to deliver best quality content with the fewest dropouts and least possible buffering. Hybrid architecture of DASH and eMBMS has attracted a great attention from the telecommunication industry and multimedia services. It is deployed in response to the immense demand in multimedia traffic. However, handover and limited available resources of the system affected on dropping segments of the adaptive video streaming in eMBMS and it creates an adverse impact on Quality of Experience (QoE), which is creating trouble for service providers and network providers towards delivering the service. In this paper, we derive a case study in eMBMS to approach to provide test measures evaluating MPEG-DASH QoE, by defining the metrics are influenced on QoE in eMBMS such as bandwidth and packet loss then we observe the objective metrics like stalling (number, duration and place), buffer length and accumulative video time. Moreover, we build a smart algorithm to predict rate of segments are lost in multicast adaptive video streaming. The algorithm deploys an estimation decision regards how to recover the lost segments. According to the obtained results based on our proposal algorithm, rate of lost segments is highly decreased by comparing to the traditional approach of MPEG-DASH multicast and unicast for high number of users.This work has been partially supported by the Postdoctoral Scholarship Contratos Postdoctorales UPV 2014 (PAID-10-14) of the Universitat Politècnica de València , by the Programa para la Formación de Personal Investigador (FPI-2015-S2-884) of the Universitat Politècnica de València , by the Ministerio de Economía y Competitividad , through the Convocatoria 2014. Proyectos I+D - Programa Estatal de Investigación Científica y Técnica de Excelencia in the Subprograma Estatal de Generación de Conocimiento , project TIN2014-57991-C3-1-P and through the Convocatoria 2017 - Proyectos I+D+I - Programa Estatal de Investigación, Desarrollo e Innovación, convocatoria excelencia (Project TIN2017-84802-C2-1-P).Abdullah, MT.; Jimenez, JM.; Canovas Solbes, A.; Lloret, J. (2017). Intelligent Algorithm for Enhancing MPEG-DASH QoE in eMBMS. Network Protocols and Algorithms. 9(3-4):94-114. https://doi.org/10.5296/npa.v9i3-4.12573S9411493-

    An Intelligent Algorithm for Resource Sharing and Self-Management of Wireless-IoT-Gateway

    Full text link
    [EN] Internet of Things (IoT) is rapidly gaining momentum in the scenario of telecommunications. Conventional networks allow for interactivity and data exchange, but these networks have not been designed for the new features and functions of IoT devices. In this paper, an algorithm is proposed to share common recourse among Things, that is, between different types of smart appliances. This proposal is based on an IoT network with centralized management architecture, controlled by an Artificial Intelligence (AI). The AI controller uses an algorithm which based on machine learning techniques, collecting information on the network through an information protocol. Every smart thing that connects to the network is announces through a protocol message called Function and Service Discovery Protocol (DFSP) over the queued message telemetry transport protocol (MQTT). The proposed algorithm is responsible for discovering and allocating resources in the networks. As a result, using our proposed algorithm in communication system provides the outperform efficiency and availability than that used in conventional communication systems for the integrate IoT devices.This work was supported in part by the "Ministerio de Economia y Competitividad'', through the "Convocatoria 2014 Proyectos I+D - Programa Estatal de Investigacion Cientica y Tecnica de Excelencia'' in the "Subprograma Estatal de Generacion de Conocimiento'', under Grant TIN2014-57991-C3-1-P and through the "Convocatoria 2017 -Proyectos I+D+I -Programa Estatal de Investigacion, Desarrollo e Innovacion, convocatoria excelencia'' under Grant TIN2017-84802-C2-1-PGonzalez Ramirez, PL.; Taha, M.; Lloret, J.; Tomás Gironés, J. (2019). An Intelligent Algorithm for Resource Sharing and Self-Management of Wireless-IoT-Gateway. IEEE Access. 8:3159-3170. https://doi.org/10.1109/ACCESS.2019.2960508S31593170

    Survey of Transportation of Adaptive Multimedia Streaming service in Internet

    Full text link
    [DE] World Wide Web is the greatest boon towards the technological advancement of modern era. Using the benefits of Internet globally, anywhere and anytime, users can avail the benefits of accessing live and on demand video services. The streaming media systems such as YouTube, Netflix, and Apple Music are reining the multimedia world with frequent popularity among users. A key concern of quality perceived for video streaming applications over Internet is the Quality of Experience (QoE) that users go through. Due to changing network conditions, bit rate and initial delay and the multimedia file freezes or provide poor video quality to the end users, researchers across industry and academia are explored HTTP Adaptive Streaming (HAS), which split the video content into multiple segments and offer the clients at varying qualities. The video player at the client side plays a vital role in buffer management and choosing the appropriate bit rate for each such segment of video to be transmitted. A higher bit rate transmitted video pauses in between whereas, a lower bit rate video lacks in quality, requiring a tradeoff between them. The need of the hour was to adaptively varying the bit rate and video quality to match the transmission media conditions. Further, The main aim of this paper is to give an overview on the state of the art HAS techniques across multimedia and networking domains. A detailed survey was conducted to analyze challenges and solutions in adaptive streaming algorithms, QoE, network protocols, buffering and etc. It also focuses on various challenges on QoE influence factors in a fluctuating network condition, which are often ignored in present HAS methodologies. Furthermore, this survey will enable network and multimedia researchers a fair amount of understanding about the latest happenings of adaptive streaming and the necessary improvements that can be incorporated in future developments.Abdullah, MTA.; Lloret, J.; Canovas Solbes, A.; García-García, L. (2017). Survey of Transportation of Adaptive Multimedia Streaming service in Internet. Network Protocols and Algorithms. 9(1-2):85-125. doi:10.5296/npa.v9i1-2.12412S8512591-

    Wireless Technologies for IoT in Smart Cities

    Full text link
    [EN] As cities continue to grow, numerous initiatives for Smart Cities are being conducted. The concept of Smart City encompasses several concepts being governance, economy, management, infrastructure, technology and people. This means that a Smart City can have different communication needs. Wireless technologies such as WiFi, ZigBee, Bluetooth, WiMax, 4G or LTE (Long Term Evolution) have presented themselves as solutions to the communication needs of Smart City initiatives. However, as most of them employ unlicensed bands, interference and coexistence problems are increasing. In this paper, the wireless technologies available nowadays for IoT (Internet of Things) in Smart Cities are presented. Our contribution is a review of wireless technologies, their comparison and the problems that difficult coexistence among them. In order to do so, the characteristics and adequacy of wireless technologies to each domain are considered. The problems derived of over-crowded unlicensed spectrum and coexistence difficulties among each technology are discussed as well. Finally, power consumption concerns are addressed.García-García, L.; Jimenez, JM.; Abdullah, MTA.; Lloret, J. (2018). Wireless Technologies for IoT in Smart Cities. Network Protocols and Algorithms. 10(1):23-64. doi:10.5296/npa.v10i1.12798S236410

    An architecture and protocol for smart continuous eHealth monitoring using 5G

    Full text link
    [EN] Continuous monitoring of chronic patients improves their quality of life and reduces the economic costs of the sanitary system. However, in order to ensure a good monitoring, high bandwidth and low delay are needed. The 5G technology offers higher bandwidth, lower delays and packets loss than previous technologies. This paper presents an architecture for smart eHealth monitoring of chronic patients. The architecture elements include wearable devices, to collect measures from the body, and a smartphone at the patient side in order to process the data received from the wearable devices. We also need a DataBase with an intelligent system able to send an alarm when it detects that it is happening something anomalous. The intelligent system uses machine learning in BigData taken from different hospitals and the data received from the patient to diagnose and generate alarms. Experiment tests have been done to simulate the traffic from many users to the DataBase in order to evaluate the suitability of 5G in our architecture. When there are few users (less than 200 users), we do not find big differences of round trip time between 4G and 5G, but when there are more users, like 1000 users, it increases considerably reaching 4 times more in 4G The Packet Loss is almost null in 4G until 300 users, while in 5G it is possible to keep it null until 700 users. Our results point out that in order to have high number of patients continuously monitored, it is necessary to use the 5G network because it offers low delays and guarantees the availability of bandwidth for all users.This work has been partially supported by the "Ministerio de Educacion, Cultura y Deporte", through the "Ayudas para contratos predoctorales de Formacion del Profesorado Universitario FPU (Convocatoria 2014)". Grant number FPU14/02953.Lloret, J.; Parra-Boronat, L.; Abdullah, MTA.; Tomás Gironés, J. (2017). An architecture and protocol for smart continuous eHealth monitoring using 5G. Computer Networks. 129(2):340-351. https://doi.org/10.1016/j.comnet.2017.05.018S340351129

    An automated model for the assessment of QoE of adaptive video streaming over wireless networks

    Full text link
    [EN] Nowadays, heterogeneous devices are widely utilizing Hypertext Transfer Protocol (HTTP) to transfer the data. Furthermore, HTTP adaptive video streaming (HAS) technology transmits the video data over wired and wireless networks. In adaptive technology services, a client's application receives a streaming video through the adaptation of its quality to the network condition. However, such a technology has increased the demand for Quality of Experience (QoE) in terms of prediction and assessment. It can also cause a challenging behavior regarding subjective and objective QoE evaluations of HTTP adaptive video over time since each Quality of Service (QoS) parameter affects the QoE of end-users separately. This paper introduces a methodology design for the evaluation of subjective QoE in adaptive video streaming over wireless networks. Besides, some parameters are considered such as video characteristics, segment length, initial delay, switch strategy, stalls, as well as QoS parameters. The experiment's evaluation demonstrated that objective metrics can be mapped to the most significant subjective parameters for user's experience. The automated model could function to demonstrate the importance of correlation for network behaviors' parameters. Consequently, it directly influences the satisfaction of the end-user's perceptual quality. In comparison with other recent related works, the model provided a positive Pearson Correlation value. Simulated results give a better performance between objective Structural Similarity (SSIM) and subjective Mean Opinion Score (MOS) evaluation metrics for all video test samples.This work has been partially supported by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" within the Project under Grant TIN2017-84802-C2-1-P. This study has been partially done in the computer science departments at the (University of Sulaimani and Halabja).Taha, M.; Ali, A.; Lloret, J.; Gondim, PRL.; Canovas, A. (2021). An automated model for the assessment of QoE of adaptive video streaming over wireless networks. Multimedia Tools and Applications. 80(17):26833-26854. https://doi.org/10.1007/s11042-021-10934-92683326854801

    Diseño de una red de sensores para monitorizar una instalación acuícola

    Full text link
    [ES] En las instalaciones acuícolas la monitorización de la calidad del agua es fundamentar para la automatización de los procesos. En este artículo presentamos una red de sensores que realizan medidas de la turbidez y la temperatura en todos los tanques. Como nodo se ha empleado un Flyport que manda los datos a un servidor y cuenta con una serie de alarmas programadas. Se ha diseñado la topología de red y física atendiendo a la estructura típica de estas instalaciones. Se ha estudiado el rendimiento de la red en distintos escenarios. Se ha establecido que el número máximo de Flyports por punto de acceso antes de devaluar la calidad de la conexión es de 5 Flyports, con una tasa de paquetes perdidos cercana al 0.5% y una tasa de paquetes por segundo media de 86.47.Este trabajo ha sido parcialmente financiado con un contrato pre-doctoral del programa Ayudas para contratos predoctorales de Formación del Profesorado Universitario FPU (Convocatoria 2014), con referencia FPU14/02953 del Ministerio de Educación, Cultura y Deporte.Rocher, J.; Parra, L.; Taha, M.; Lloret, J. (2018). Diseño de una red de sensores para monitorizar una instalación acuícola. En XIII Jornadas de Ingeniería telemática (JITEL 2017). Libro de actas. Editorial Universitat Politècnica de València. 48-54. https://doi.org/10.4995/JITEL2017.2017.6623OCS485
    corecore